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Abstract

Germline PTEN mutations defining PTEN hamartoma tumor syndrome (PHTS) confer 

heritable predisposition to breast, endometrial, thyroid and other cancers with known 

age-related risks, but it remains impossible to predict if any individual will develop 

cancer. In the general population, gut microbial dysbiosis has been linked to cancer, yet 

is unclear whether these are associated in PHTS patients. In this pilot study, we aimed 

to characterize microbial composition of stool, urine, and oral wash from 32 PTEN 

mutation-positive individuals using 16S rRNA gene sequencing. PCoA revealed clustering 

of the fecal microbiome by cancer history (P = 0.03, R2 = 0.04). Fecal samples from PHTS 

cancer patients had relatively more abundant operational taxonomic units (OTUs) from 

family Rikenellaceae and unclassified members of Clostridia compared to those from 

non-cancer patients, whereas families Peptostreptococcaceae, Enterobacteriaceae, and 

Bifidobacteriaceae represented relatively more abundant OTUs among fecal samples 

from PHTS non-cancer patients. Functional metagenomic prediction revealed enrichment 

of the folate biosynthesis, genetic information processing and cell growth and death 

pathways among fecal samples from PHTS cancer patients compared to non-cancer 

patients. We found no major shifts in overall diversity and no clustering by cancer history 

among oral wash or urine samples. Our observations suggest the utility of an expanded 

study to interrogate gut dysbiosis as a potential cancer risk modifier in PHTS patients.

Introduction

Individuals with germline PTEN mutations have an 
inherited cancer syndrome known as PTEN hamartoma 
tumor syndrome (PHTS), which is characterized by 
increased risk of endocrine cancers including 85% 
lifetime cancer risk for the female breast, 35% thyroid 
and 28% endometrium; non-endocrine cancers are also 
components of the syndrome and include renal cancer 

(33% lifetime risk), colorectal (9%) and melanoma (6%) 
(Eng 2001, Tan et al. 2012). These data provide evidence 
for PTEN-enabled cancer risk assessment, surveillance 
and medical management for PHTS patients as a group. 
However, there is currently no way to predict if any 
one individual harboring a PTEN mutation will develop 
cancer, and if so, which cancer(s). There is, therefore,  
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a need to ascertain clinically significant risk factors for 
cancer at an individual level in PHTS.

Cancer susceptibility is influenced by interactions 
between environmental and genetic factors; however, our 
understanding of which environmental factors influence 
cancer risk is incomplete. While the environmental 
component of a few cancers can be largely attributed 
to a single carcinogen—for example, lung cancer and 
tobacco smoking—this represents the exception, as most 
environmental contributors to cancer risk remain to be 
characterized (Bultman 2014). The human microbiome 
has recently received much attention as a potential 
modifier of cancer risk in the general population (Plottel & 
Blaser 2011). Breast cancer has been linked to dysbiosis, or 
perturbation of the normal microbial composition, of the 
breast and oral cavity (Xuan et al. 2014, Freudenheim et al. 
2016). This association may be at least partly explained by 
altered microbial metabolism of estrogen in the dysbiotic 
microbiome (Flores et  al. 2012, Fuhrman et  al. 2014). 
Dysbiosis of the gut has been implicated in colorectal 
cancer (CRC), and alterations in the urinary microbiota 
have been linked to urothelial carcinoma (Louis et  al. 
2014, Xu et  al. 2014). Proposed mechanisms for these 
links include injection of direct effectors into host cells, 
induction of a pro-inflammatory microenvironment and 
altered host–microbiota interactions leading to activation 
of key cancer-promoting pathways like STAT3 and NF-κB 
(Rajagopala et al. 2017).

No study has yet investigated whether microbial 
dysbiosis of the gut, urinary tract or oral cavity is 
associated with heritable cancer specifically in patients 
with germline PTEN mutations. An important question is 
whether differences in the oral, urinary tract and/or gut 
microbiota of individuals with germline PTEN mutations 
are associated with the neoplastic outcome.

We therefore sought to conduct a hypothesis-
generating study with the broad view that the microbiome 
might be a modifier of PTEN-related disease risk. 
Specifically, we wished to explore whether the microbial 
communities of the gut, oral cavity and urinary tract 
would differ in diversity and overall composition between 
PHTS patients with and without component cancers.

Materials and methods

Patient enrollment and sample collection

With approval from our Institutional Review Board for 
Human Subjects’ Protection and after written informed 

consent, we contacted the subset of patients in our 
longitudinal Molecular Mechanisms of Cancer study 
(protocol 8458-PTEN) with identified pathogenic germline 
mutations in the PTEN gene. From this cohort, we enrolled 
17 individuals with a history of component cancers and 
15 without a history of cancer. History of cancer was 
determined by self-reporting and confirmed via medical 
record review. Demographics, clinical history and diet and 
lifestyle information were collected prospectively through 
completion of a questionnaire at the time of enrollment 
(Supplementary Fig. 1, see section on supplementary data 
given at the end of this article).

From each patient, we obtained a midstream clean-
catch urine specimen, a saline oral rinse sample, and a 
stool sample at the time of written consent from patients 
seen in our multidisciplinary PTEN clinic and by mail 
from patients not seen in clinic.

Urine was centrifuged at 600 g for 10 min. Oral rinse 
supernatant was centrifuged at 3000 g for an additional 
15 min. After decanting the supernatant, the pellet was 
frozen and stored at −80°C until nucleic acid extraction. 
Stool samples were aliquoted into microcentrifuge tubes 
and stored at −80°C until nucleic acid extraction.

DNA extraction

Total DNA was extracted from urine and oral rinse 
pellets, and from fecal specimens, using PowerViral 
RNA/DNA Isolation kit according to the manufacturers’s 
protocol (Mo Bio Laboratories, Carlsbad, CA, USA) with 
minor modifications. Pellets were resuspended in 650 µL 
MoBio PV1 solution with ß-mercaptoethanol, and then 
transferred to PowerViral glass bead tubes and warmed at 
55°C for 10 min. Samples were homogenized using the 
TissueLyser LT (Qiagen) at 25 Hz for 10 min and centrifuged 
at 13,000 g for 1 min, after which supernatants were 
transferred to a clean 2 mL collection tube with 150 µL 
of solution PV2 and incubated at 4°C for 5 min. Lysates 
were centrifuged at 13,000 g for 1 min, and supernatants 
transferred to a clean 2.2 mL tube with 600 µL of solutions 
PV3 and PV4 and vortexed, after which 625 µL of 
supernatant was repeatedly loaded onto a spin filter and 
centrifuged at 13,000 g for 1 min until all supernatant was 
loaded onto the filter. 600 µL each of solutions PV5 and 
PV6 were added, with 1 min of centrifugation after each, 
discarding flow-through; tubes were then centrifuged for 
2 min before spin filter basket was placed into a clean tube 
and DNA eluted in 100 µL of RNAse-free water.
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16S rRNA gene sequencing

Bacterial 16S rRNA gene amplification and library 
construction was performed according to the 16S 
Metagenomic Sequencing Library Preparation guide from 
Illumina (Forest City, CA, USA) with minor modifications. 
All beads, tubes and non-enzymatic reagents were treated 
with UV light for 30 min prior to use (Tamariz et al. 2006). 
Briefly, total DNA was PCR-amplified using primers 
targeting the 16S V3 and V4 region (Illumina) (Klindworth 
et  al. 2013) under the following conditions: 95°C for 
5 min, followed by 35 cycles of 95°C for 30 s, 56°C for 30 s, 
72°C for 30 s and a final extension of 72°C for 10 min. The 
resulting 16S rDNA amplicons were run on a 1% agarose 
gel, size-selected at 450–500 bp and gel-purified using 
QIAquick Gel Purification kit (Qiagen). A second round of 
PCR was performed to add Nextera XT indices (Illumina) 
to purified amplicons. Indexed PCR products were purified 
with Ampure XP beads (Beckman Coulter, Brea, CA, USA) 
and quantified with Qubit dsDNA system (ThermoFisher 
Scientific). Samples were then normalized and pooled 
into sequencing libraries at 20 nM for oral wash and fecal 
samples and 1 nM for urine samples, then validated on 
a Bioanalyzer DNA 1000 chip (Agilent) and sequenced 
on the Illumina MiSeq with a V3 reagent kit at the Case 
Western Reserve University Genomics Core Facility.

Bioinformatic analysis

Paired-end reads, which were 250 bp in length, were 
merged with FLASH (Magoč & Salzberg 2011). Low-
quality reads (Phred <20) were filtered out using the 
split_libraries.py command in QIIME (version 1.9) 
(Caporaso et  al. 2010). A hybrid sequencing analysis 
methodology was adopted, in which preprocessing was 
performed in QIIME and open-reference operational 
taxonomic unit (OTU) picking was implemented within 
MICCA (Albanese et  al. 2015). Vsearch (version 1.9.5) 
(Rognes et al. 2016) was used to cluster sequences with a 
threshold of 97% similarity, and representative sequences 
were classified using RDP classifier (version 2.11) (Wang 
et al. 2007). Multiple sequence alignment was performed 
using MUSCLE (version 3.8.31) (Edgar 2004) against the 
Greengenes database (version 13.8) (DeSantis et al. 2006), 
filtered at 97% similarity, and FastTree (version 2.1.8) was 
used for phylogenetic tree construction (Price et al. 2009). 
Taxa represented in fewer than 5% of total samples in the 
group were then discarded. Rarefaction to 1000 reads per 
sample for fecal, 365 for urine and 1449 for oral wash 
samples was performed to reduce sampling heterogeneity, 

and computation of alpha (Shannon diversity index) and 
beta diversity measures (unweighted UniFrac distances) 
was performed with QIIME.

Statistics

Comparison of continuous and categorical demographics/
clinical factors of cancer vs non-cancer samples was 
performed using two-sided Student’s t-test. Two-sided 
Student’s t-test was used to compare Shannon index, 
and distance matrices were compared using the Adonis 
statistical method, which is based on the nonparametric 
analysis of variance (ANOVA) family of statistical methods 
and uses F-tests based on sequential sums of squares from 
permutations on weighted and unweighted UniFrac 
distance matrices, with the null hypothesis that there is 
no difference in community structure between groups. To 
compare relative abundances of taxa between different 
categorical variables, Welch’s t-test or the Kruskal–Wallis 
test was used.

To identify taxa that were differentially abundant in 
cancer vs non-cancer groups, de novo OTUs were removed, 
and the remaining OTUs were input into PICRUSt 
(Langille et al. 2013) and LEfSe (Segata et al. 2011). This 
algorithm performed nonparametric statistical testing 
of whether individual taxa differed between the class 
cancer vs non-cancer, and the sub-class sex, and ranked 
differentially abundant taxa by their linear discriminant 
analysis (LDA) log-score. Differentially abundant taxa 
that were statistically significant using an alpha of 0.05 
and exceeded an LDA log-score of ±2 were visually 
represented on cladograms and box plots. To determine 
differences in predicted functional metagenomes between 
cancer vs non-cancer samples, open-reference OTU 
tables generated by QIIME/MICCA were associated with  
clinical/demographic data and input into PICRUSt and 
LEfSe via the Huttenhower Lab Galaxy Server (Blankenberg 
et al. 2010).

All statistical tests were two-sided, with P < 0.05 
considered statistically significant. All analyses were 
conducted and graphs created in JMP Pro 13 (SAS Institute, 
Cary, NC, USA) or R packages VEGAN (Dixon 2003) and 
phyloseq (McMurdie & Holmes 2013). Plots were made 
with QIIME and ggplot2 (Wickham 2009).

Data availability

The datasets generated and analyzed during the current 
study are available from the corresponding author on 
reasonable request.
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Results

Study population

A total of 32 unrelated PHTS patients were enrolled in 
this study, 17 of whom had a history of cancer and 15 
of whom had no history of cancer. All patients returned 
a questionnaire assessing demographic and clinical 
characteristics.

Twelve of the 17 cancer patients had a history of 
breast cancer (71%), seven of thyroid (41%), five of 
kidney (29%), three of skin (18%), two of endometrial 
(12%) and one of colon cancer (6%). Five had a history 
of another type of cancer; all five also had a history of 
at least one component cancer of PHTS. PHTS patients 
with a history of cancer had a higher mean age than non-
cancer PHTS patients (56 vs 34, P = 0.0002). There was a 
higher proportion of females among those with cancer 
than those without (77% vs 40%, P = 0.04). These findings 
reflect the age and sex distribution of our larger cohort 
of patients with pathogenic germline PTEN mutations 
described by Tan et  al. (2011). Other variables assessed 
in the questionnaire, including BMI, diet, alcohol 
consumption, smoking history and antibiotic use, did 
not differ significantly between PHTS patients with and 
without cancer (Table 1).

Fecal microbiome

One patient from the non-cancer group did not contribute 
a fecal sample; thus, 31 fecal samples were used for the 
initial analysis. Grouping reads retrieved from 16s rRNA 
gene amplicon sequencing at 97% similarity resulted in 
the identification of 5888 bacterial operational taxonomic 
units (OTUs). After chloroplast sequences and low-
prevalence (found in less than 5% of all fecal samples) 
OTUs were removed, 4211 OTUs remained. Overall, 
10 bacterial phyla were detected in fecal samples, with 
Firmicutes being the most dominant (84.6%), followed by 
Bacteroidetes (11.4%). Other phyla were present at lower 
levels, including Proteobacteria (1.8%) and Actinobacteria 
(1.6%), and six other phyla at marginal levels (affiliated 
with less than 1% of sequences).

Depth of coverage for fecal samples was set to 1000 
reads per sample based on leveling off of Shannon 
indices. Due to this cut-off, 2 of the 31 samples were 
excluded from further analyses; thus, 16 samples from 
PHTS patients with a history of cancer and 13 from 
PHTS patients without a history of cancer were used for 
the final analysis.

Mean alpha (within-sample) diversity as measured 
by the Shannon index (H) was not significantly different 
among samples from patients with cancer (H = 6.5 ± 0.6) 
than samples from those without cancer (H = 6.3 ± 0.7; 
P = 0.5) (Fig.  1A). Shannon indices did not differ 
significantly by age (grouped by decade), sex, antibiotic 
use or any other clinical or demographic variable.

Principal coordinates analysis (PCoA) was used to 
evaluate differences in overall bacterial taxa composition 
in fecal samples from PHTS patients with cancer vs those 
without cancer. We found that samples from patients with 
and without a history of cancer clustered separately on 
unweighted UniFrac PCoA (P = 0.03, R2 = 0.04; Fig. 1B). We 
also found that samples from patients with breast cancer 
clustered distinctly on unweighted UniFrac from samples 
from all other patients, including those with other types 
of cancer (P = 0.02, R2 = 0.05; Fig. 1C). Finally, we observed 
clustering by antibiotic use on unweighted UniFrac, but 
this was of borderline significance (P = 0.05, R2 = 0.04). 

Table 1 Demographic characteristics of study PHTS patients 

with and without cancer history.

 
Variable

Cancer 
(N = 17)

Non-cancer 
(N = 15)

 
P value

Age (years) 56 ± 12 34 ± 18 0.0002
Sex
 Female 13 (77) 6 (40) 0.04
 Male 4 (24) 9 (60)
BMI 31 ± 12 31 ± 9 0.4
Race 0.2
 White 17 (100) 13 (87)
 Black 0 (0) 1 (7)
 Multiracial 0 (0) 1 (7)
Smoking history 0.3
 Yes 3 (18) 1 (7)
 No 14 (82) 14 (93)
Alcohol use 0.1
 Yes 11 (65) 6 (40)
 No 6 (35) 9 (60)
Antibiotic use (past year) 0.5
 Yes 7 (41) 5 (33)
 No 10 (59) 10 (67)
Diet 0.7
 Western 12 (71) 13 (87)
 Mediterranean 1 (6) 1 (7)
 Low-carb 1 (6) 0 (0)
 Paleo 1 (6) 0 (0)
 Other 2 (12) 0 (0)
 Unknown 0 (0) 1 (70)
Mode of delivery 0.2
 Vaginal 12 (71) 7 (47)
 C-section 3 (18) 6 (40)
 Unknown 2 (12) 2 (13)

Values are presented as means ± s.d. or number (percent).
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However, there was no significant difference in antibiotic 
use between PHTS patients with and without cancer in 
this study. There was no significant clustering by sex, nor 
by any other clinical or demographic variable.

Next, we performed a LDA comparison of relative 
abundances with LEfSe (Fig.  1D). This revealed a 

relative increase in abundance of families Rikenellaceae, 
Eubacteriaceae, two unclassified Clostridia and Clostridiales 
bacterium S5-A14a (also known as Clostridiales Family 
XIII Incertae Sedis), among fecal samples from PHTS 
patients with a history of cancer relative to patients 
without a history of cancer. Meanwhile, we observed 

Figure 1
The microbiome of fecal samples is distinct between PHTS patients with and without a history of cancer. (A) Rarefaction curves comparing alpha diversity 
by Shannon index of fecal microbiome from patients with and without a history of cancer. (B and C) Ordination plots showing the clustering pattern of 
samples from patients with and without a history of cancer (B) and with and without a history of breast cancer (C) based on unweighted UniFrac 
distance. (D1 and D2) LEfSe differential abundance analyses of the microbiome between fecal samples from patients with (green) and without (red) 
cancer (D1). A cladogram demonstrates the phylogenetic relationships between differentially abundant taxa (D2). (E1 and E2) The differential KEGG 
pathways as revealed by PiCRUSt analysis. Clades and KEGG pathways in these graphs were considered differentially abundant if alpha > 0.05 and if the 
LDA log-score exceeded ±2.
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that families Peptostreptococcaceae, Clostridiaceae 1, 
Bifidobacteriaceae, Enterobacteriaceae and unclassified 
Bifidobacteriales, Selenomodales, Enterobacteriales and 
Negativicutes were relatively more abundant among fecal 
samples from non-cancer patients compared to cancer 
patients.

Finally, metagenome functional content was 
predicted using PICRUSt and group comparisons were 
performed with LEfSe, revealing relatively increased 
predicted expression of pathways involved in folate 
and zeatin biosynthesis, genetic information processing 
(homologous recombination and mismatch repair), and 
cell growth and death among fecal samples from patients 
with a history of cancer. Meanwhile, there was predicted 
enrichment of pathways for signal transduction, 
membrane transport and bacterial motility proteins and 
chemotaxis among samples from patients with no history 
of cancer (Fig. 1E).

Oral wash microbiome

Oral wash samples yielded 1223 bacterial OTUs. After 
chloroplast sequences and low-prevalence OTUs were 
removed, 884 OTUs remained. Ten bacterial phyla 
were detected in oral wash samples. Firmicutes was 
most dominant (46.2%), followed by Bacteroidetes 
(19.6%), Proteobacteria (12.0%), Actinobacteria (10.6%), 
Fusobacteria (5.9%), Candidatus Saccharibacteria (2.5%), 
Spirochaetes (1.9%) and three marginal phyla.

Two cancer patients and one non-cancer patient did 
not provide oral wash samples; thus, 15 samples from 
PHTS patients with cancer and 14 from patients without 
cancer were used in the analysis. Depth of coverage for 
oral wash samples was set to 1449 reads per sample based 
on leveling off of Shannon indexes. No samples were 
excluded due to this cut-off.

We did not find significant differences in alpha 
diversity in samples from PHTS patients with vs without 
cancer, nor in any other clinical or demographic variable. 
We also did not find clustering on weighted or unweighted 
PCoA by cancer history (Supplementary Fig. 2), sex or any 
other variable. LDA comparison of relative abundances 
with LEfSe was performed next (Fig.  2A), revealing 
relatively increased abundance of order Coriobacteriales, 
including family Coriobacteriaceae among samples from 
cancer patients, in contrast to the relative enrichment 
of family Moraxellaceae and unclassified members 
of Gammaproteobacteria and other Proteobacteria 
among samples from non-cancer patients. In addition, 
functional metagenome prediction (Fig.  2B) revealed 

increased expression of pathways involved in metabolism 
of vitamins and cofactors, including folate biosynthesis 
and thiamine metabolism, among samples from patients 
with cancer; pathways for cell motility, transporters and 
methane metabolism were predicted to be increased 
among samples from patients without cancer.

Urine microbiome

Urine samples yielded 4751 bacterial OTUs. After removal 
of chloroplast sequences and low-prevalence OTUs, 1578 
OTUs remained. Eleven bacterial phyla were detected: 
Firmicutes was most dominant (58.8%), then Bacteroidetes 
(16.4%), Actinobacteria (10.7%), Proteobacteria (10.5%), 
Fusobacteria (1.8%) and six marginal phyla.

One cancer patient and three non-cancer patients did 
not provide urine samples; thus, 16 samples derived from 
patients with cancer and 12 from patients without cancer 
were used in the final analysis. Depth of coverage for urine 
samples was set to 365 reads per sample based on leveling 
off of Shannon indices. No samples were excluded due to 
this cut-off.

Mean alpha diversity was not significantly different 
in samples from patients with vs without cancer. Alpha 
diversity was significantly higher in samples from 
male (H = 6.6 ± 1.1) vs female patients (H = 3.6 ± 1.8; 
P = 0.001). Urine samples from PHTS patients did not 
cluster significantly by cancer history on unweighted 
UniFrac PCoA (Supplementary Fig. 3A). However, we did 
observe significant clustering by sex (P = 0.001, R2 = 0.08) 
(Supplementary Fig. 3B). We did not observe significant 
clustering by any other variable.

LDA comparison of relative abundances 
(Fig.  2C) revealed relatively increased abundance of 
families Comamonadaceae, Intrasporangiaceae and 
Carnobacteriaceae among patients without cancer (no 
families were relatively more abundant in non-cancer 
patients). Functional metagenome prediction revealed 
several differentially expressed pathways according to 
cancer status (Fig.  2C); however, all of these could be 
accounted for by differences in the predicted functional 
metagenome according to sex, with the exception of the 
predicted increased expression of fatty acid biosynthesis 
pathways among urine samples derived from non-cancer 
PHTS patients.

Discussion

This investigation was designed as a pilot study to 
explore whether microbiota from different bodily 
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sites of individuals carrying germline PTEN  mutations 
would differ by cancer phenotype. We found that fecal 
microbiota yielded structural segregation (unweighted 
UniFrac distance) according to the presence or absence 
of cancer history. However, there was no difference 
in overall diversity among fecal samples from cancer 
patients compared to those from PHTS patients without 
cancer. Comparison of oral wash and urine samples of 
PHTS patients with vs without cancer revealed no major 
shifts in diversity or community structure.

Consistent with previous reports, serving as positive 
controls, we found that Firmicutes and Bacteroidetes 
were by far the most dominant phyla among human gut 
microbiota (Tap et al. 2009, Arumugam et al. 2011), and 
that Firmicutes predominated in both the oral cavity and 

the male and female urinary tract (Lewis et al. 2013, Wang 
et al. 2017).

We did not find any significant difference in alpha 
diversity in fecal samples from PHTS patients with 
compared to those without component cancers, in contrast 
with previous reports of decreased diversity in cancer 
patients (Ahn et al. 2013). It is well documented that gut 
microbiota of patients with sporadic, or non-PTEN related, 
breast and colorectal cancer compared to healthy controls 
are structurally distinct (Wang et al. 2012, Goedert et al. 
2015, Flemer et al. 2017). In PHTS patients, we also found 
structurally distinct gut microbial communities in those 
with vs without cancer. While exposures related to cancer 
treatment may influence microbiome composition, the 
wide variety of combinations of chemotherapy, radiation 

Figure 2
The microbiome of oral wash and urine samples varies in PHTS patients with and without a history of cancer. (A) LEfSe differential abundance analyses 
of the oral microbiome from patients with (green) and without (red) cancer. (B) The differential KEGG pathways of the oral microbiome from patients 
with (green) and without (red) cancer as revealed by PiCRUSt analysis. (C) LEfSe differential abundance analyses of the urinary microbiome between 
samples from patients with (green) and without (red) cancer. KEGG pathways in these graphs were classified as differentially abundant if alpha > 0.05 
and if the LDA log-score exceeded ±2.
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and surgery to which PHTS cancer patients may have 
been exposed makes it unlikely that this was a major 
confounding variable. Gut microbial communities were 
also distinct among PHTS patients with breast cancer 
compared to those without breast cancer. It is possible 
that the gut microbiome exerts a carcinogenic effect on 
the breast tissue via its role in estrogen metabolism; future 
microbiome studies could include an analysis of urine 
estrogen levels in PHTS patients with and without breast 
cancer to investigate this possibility.

Among fecal samples from cancer patients compared 
to non-cancer patients, we report relatively increased 
abundance of family Rikenellaceae, whose members 
are gram-negative, non-motile anaerobes (Graf 2014) 
reported to be enriched in mice consuming a high-fat diet 
(Kim et al. 2012) and diabetic mice (Geurts et al. 2011). 
High levels of endogenous estrogens are a risk factor 
for breast cancer (Fuhrman et al. 2012), and obesity is a 
determinant of non-ovarian systemic estrogen levels and 
an independent risk factor for breast cancer, the most 
component cancer of PHTS (Cleary & Grossmann 2009). 
There is a known association of germline PTEN mutations 
with increased adiposity and paradoxically enhanced 
insulin sensitivity (Pal et al. 2012). In light of the many 
growth pathways that play dual roles in carcinogenesis 
and the development of obesity, it is plausible that 
Rikenellaceae may modulate signaling down the PI3K/
AKT pathway that is constitutively activated in PHTS to 
modify risk for both cancer and obesity.

Estrogen metabolism in the liver results in the 
excretion of conjugated estrogens into the bile and 
eventually the gut, where they are deconjugated and 
reabsorbed into circulation to a variable degree. Flores and 
coworkers demonstrated that four Clostridia taxa in fecal 
samples from men and post-menopausal women were 
associated with non-ovarian urine estrogen levels (2012). 
This could provide a mechanism for increased cancer risk 
independent of BMI. Consistent with this observation, we 
observed relatively increased abundance of unclassified 
Clostridia in fecal samples from PHTS patients with cancer 
compared to those without cancer.

Peptostreptococcaceae, whose members are 
motile anaerobes, has been reported to be relatively 
overrepresented in the gut microbiome of colorectal 
cancer patients (Ahn et al. 2013). In contrast, we observed 
a relative underrepresentation of Peptostreptococcaceae 
among fecal samples from PHTS patients with cancer 
compared to those without cancer. Clostridiaceae 1 was 
also underrepresented in fecal samples from PHTS patients 
with cancer; members of this family include pathogens 

such as Clostridium perfringens. In addition, members 
of Enterobacteriales including Enterobacteriaceae were 
relatively more abundant among fecal samples from non-
cancer compared to cancer patients. Enterobacteriaceae 
has been implicated in intestinal inflammation (Morgan 
et  al. 2012). According to mouse studies, inflammation 
driven by members of the Enterobacteriaceae family is 
necessary but not sufficient for carcinogenesis (Arthur 
et  al. 2012). Given the immune dysregulation in PHTS 
patients and defects in mucosal B-cell homeostasis (Heindl 
et al. 2012, Chen et al. 2017), it is tempting to speculate 
that dysbiosis-associated inflammation could contribute 
to PHTS-associated cancer risk. It is almost certain that 
some non-cancer PHTS patients in this study will develop 
cancer; it would be interesting to see whether members 
of Enterobacteriaceae or Clostridiaceae are more relatively 
abundant in the gut microbiome of these patients, 
and whether a rise in these taxa coincides with cancer 
development. Future studies are warranted to provide a 
longitudinal view of the role of the microbiome in PHTS.

Sivan et al. (2015) showed that Bifidobacterium plays a 
role in antitumor immunity, and identified B. longum, an 
early colonizer of the infant gastrointestinal tract with the 
ability to break down human milk oligosaccharides, as one 
of two beneficial species (Schell et al. 2002, Underwood 
et  al. 2015). Interestingly, we found increased relative 
abundance of Bifidobacteriaceae, the parent family 
for genus Bifidobacterium, among fecal samples from 
PHTS patients with no history of cancer. It is tempting 
to speculate that this family may play a protective role 
against development of cancer in PHTS patients and 
perhaps the broader population.

The predicted enrichment of the folate biosynthesis 
pathway among fecal samples from cancer patients is an 
interesting finding. Recent studies have linked excessive 
microbial folate production to a shortened lifespan in 
Caenorhabditis elegans, showing that metformin abrogates 
this effect by altering microbial folate metabolism (Virk 
et al. 2012, Cabreiro et al. 2013). There are many shared 
pathways in cancer and aging, and anti-folate medications 
are a mainstay of many cancer chemotherapy regimens. 
Given our findings, in the context of these associations, 
it is plausible that microbial folate biosynthesis could be 
a mediator of cancer risk in individuals with PHTS. Future 
studies are needed to better elucidate a potential role for 
microbial folate production in carcinogenesis.

While we found no major shifts in alpha diversity 
or structural segregation in oral wash samples, 
we did identify increased relative abundance of 
Coriobacteriaceae, which has been associated with 
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increased non-HDL cholesterol levels in the hamster 
colon (Martínez et al. 2009), among samples from PHTS 
cancer patients compared to non-cancer patients, and 
relatively decreased Gammaproteobacteria, including 
genus Moraxella, which contains several opportunistic 
pathogens (Blakeway et al. 2017).

The microbiome is a new and rapidly expanding field, 
with recent advances in DNA sequencing technologies 
allowing us to move beyond the constraints of culture-
dependent techniques to comprehensively examine 
microbial communities associated with various states of 
human health and disease. To our knowledge, this is the 
first study investigating the microbiota of individuals 
with PHTS or any other inherited cancer syndrome. PHTS 
patients represent an ideal study population, because, due 
to their dramatically elevated risks of cancer, we may have 
a greater chance of detecting a modifiable microbiota 
contributor that would otherwise be too subtle to detect 
in the general population.

The major limitations of this pilot study were its small 
sample size and failure to age- and sex-match cancer and 
non-cancer patients. A larger, matched study will have 
greater power to minimize the effect of these confounding 
factors and detect subtle differences in the microbiota of 
these groups. Finally, we were limited by the mode of 
sample collection in this study. Because PHTS is a rare 
disorder and study patients are spread throughout the 
world, sample collection kits were shipped to subjects, 
resulting in variable sample transit time. Importantly, 
there were no significant differences in antibiotic use over 
the past 12 months between patients with and without 
cancer.

While we set out to generate the hypothesis that 
PHTS-related microbiota could modify cancer status, 
we did not design our study to analyze microbiome 
differences between PHTS individuals and controls 
without PTEN mutations. Neither did we design out study 
to analyze microbiome differences between PHTS with 
cancer and the general population with sporadic cancer. 
These hypotheses are worthy and our pilot data should 
provide a useful platform to inform such future studies. 
We did intend to compare PHTS with autism spectrum 
disorder and neurotypical PHTS. However, we were only 
able to accrue 6 of the latter, all of whom were children, 
compared to neurotypical PHTS, who were all adults, and 
we chose to exclude the autism dataset.

From our pilot study, we have generated the 
hypotheses that there are distinct gut microbial 

communities in individuals with PHTS with compared to 
without component cancers, providing initial evidence 
that differences in gut microbial composition may 
inform phenotypic outcome in PHTS patients. While 
these findings are preliminary and require validation in a 
larger cohort, they suggest that the microbiota may have 
potential as a diagnostic and/or therapeutic target in the 
development of cancer in individuals with PHTS, with 
implications for cancer in the general population. We 
believe our observations may be sufficient to generate a 
hypothesis-driven expanded study to reveal differences in 
microbial composition and diversity not detected by this 
exploratory study, and to further explore sub-hypotheses 
suggested by the findings of this pilot study; for example, a 
potential relationship between the gut microbiota of PHTS 
patients, non-ovarian estrogen levels and cancer risk or 
investigate other potential variables affecting microbiota 
composition, such as seropositivity for common viruses 
such as HSV, often reactivated in patients with cancer 
(Djuric et  al. 2009). In sum, therefore, investigation of 
the microbiome as a modifier of phenotype in those with 
heritable cancer syndromes, such as PHTS, is feasible and 
might show promise from risk assessment to medical 
management points of view.
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